经济与管理中的数学规划
中国人民大学 / 魏权齡
9787300116846
¥23.90 ¥32.00
九成新 文学艺术
《经济与管理中的数学规划》是作者十几年来,在中国人民大学为经济、管理、统计、财政、金融、信息等专业讲授本科生高年级、硕士研究生全校统开课——“数理分析方法与技术”、博士研究生全校统开课——“优化方法”,以及数量经济学研究生专业课——“数学规划理论与方法”的基础上完成的。《经济与管理中的数学规划》的主要目的是为经济、管理、财政等专业不同层次的学生提供一些定量分析的方法、理论和模型,也是满足提高数学水平和数学修养、培养对实际问题进行定量分析的能力的需要。因此,也可供数学专业和信息、计算机专业的学生用做教材。
《经济与管理中的数学规划》除讲述数学规划中的基本理论(例如:凸集、凸函数、凸规划、多目标规划、库思—塔克条件等)外,还讲述它们在微观经济学、福利经济学等领域中的有关模型和应用。例如资源的最优配置模型;厂商的最佳预算模型;福利经济学中的帕累托(Pareto)最优;乃至在博弈论、经济均衡(其中包括古诺模型、斯塔伯格模型、瓦尔拉斯一般均衡模型)等理论中涉及数学规划应用的内容,以及线性规划的对偶理论及经济解释、数据包络分析(DEA)等,其间涉及经济学中的“边际”、“影子价格”、“机会成本”和“规模收益”和“拥挤”迹象的评估,等等。
《经济与管理中的数学规划》力求深入浅出,特别注重几何直观和数例分析,所需数学基础仅限于《经济数学基础》中的微分学、线性代数和解析几何(初步)。《经济与管理中的数学规划》力争做到具有“可读性”——使学生(读者)容易阅读和自学;具有“可讲性”——使教师愿意选做教材使用。
《经济与管理中的数学规划》除讲述数学规划中的基本理论(例如:凸集、凸函数、凸规划、多目标规划、库思—塔克条件等)外,还讲述它们在微观经济学、福利经济学等领域中的有关模型和应用。例如资源的最优配置模型;厂商的最佳预算模型;福利经济学中的帕累托(Pareto)最优;乃至在博弈论、经济均衡(其中包括古诺模型、斯塔伯格模型、瓦尔拉斯一般均衡模型)等理论中涉及数学规划应用的内容,以及线性规划的对偶理论及经济解释、数据包络分析(DEA)等,其间涉及经济学中的“边际”、“影子价格”、“机会成本”和“规模收益”和“拥挤”迹象的评估,等等。
《经济与管理中的数学规划》力求深入浅出,特别注重几何直观和数例分析,所需数学基础仅限于《经济数学基础》中的微分学、线性代数和解析几何(初步)。《经济与管理中的数学规划》力争做到具有“可读性”——使学生(读者)容易阅读和自学;具有“可讲性”——使教师愿意选做教材使用。